

CO2 Laser Basic Knowledge

Materials & Possibilities of Processing

Taufenbach Laser · developed and produced in Germany more at www.taufenbach.de

White Paper: Lambert-Beer's Law in the CO₂ Laser Material Processing

Lambert-Beer's law describes the exponential decrease in the intensity of radiation as it passes through an absorbing medium. It is a central principle for material processing with CO_2 lasers, as it explains why

the energy in organic and polymer materials so effectively at the surface is absorbed.

1. Basics

The equation in its general form is:

$$I(z) = I_0 \cdot e^{-\alpha \cdot z}$$

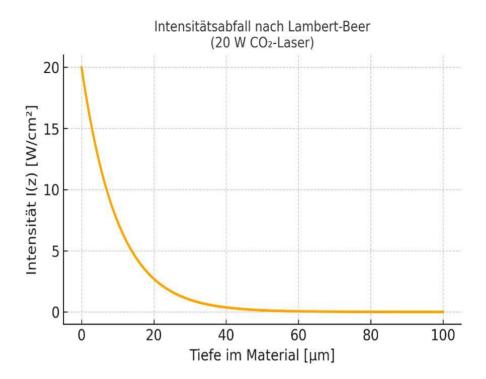
The following applies: I(z) = intensity after a material layer of thickness z, I_0 = Initial intensity, α = absorption coefficient [1/length], z = layer thickness.

Physical significance

The law describes that for each additional layer thickness, the same fraction of the intensity is absorbed. This results in an exponential drop. For CO_2 laser radiation (λ = 10.6 μ m) means that many organic materials such as wood, Plastics or glass absorb the energy even in very thin Surface layers.

$_{\mathrm{2}}$. Example calculation with 20 W CO $_{\mathrm{2}}$

A CO_2 laser with an output power of 20 W hits a polymer with Absorption coefficient $\alpha = 1000 \text{ cm}^{-1}$. The layer thickness is $z = 50 \mu m = 0.005 \text{ cm}$.


Calculation:

```
I(z) = 20 \cdot e^{-1000} \cdot 0.005
I(z) = 20 \cdot e^{-1000}
I(z) \approx 0.13 \text{ W/cm}^2
```

The result shows: After only 50 μ m, only 0.7 % of the original Laser intensity. Almost all of the energy is absorbed on the surface – ideal for precise cutting, engraving and marking.

Visualization of the drop in intensity

${\tt 3}$. Practical relevance for ${\tt CO_2}$ laser processing

Lambert-Beer 's law provides the physical basis for many Applications in material processing:

Material	Absorption behavior at 10.6 μm	Practical
Wood / Paper	Very high absorption due to OH and clean CLCH bindings	consequence Itting & Engrave
Plastics (e.g. PMMA)	Strong absorption by C=O groups	Precise removal, clear Edges
Glas s	Absorption by Si–O–Si oscillations	Targeted scribing or Marking possible
Metals	Very low absorption, strong Reflection	CO ₂ lasers mostly unsuitable without Pretreatment

4 . Result

Lambert-Beer's Law impressively shows why CO_2 lasers are the method of choice for processing organic and polymer materials: The energy is concentrated in a thin surface layer, which enables precise, efficient and material-friendly processes . This makes the CO_2 laser an indispensable tool in modern industrial material processing.

Haftungsausschluss / Disclaimer

The information contained in this document is for general guidance only and does not constitute binding technical advice. They do not claim to be complete or unconditionally correct. Taufenbach GmbH assumes no liability for the suitability of the laser marking methods described for specific applications or processes. It is the customer's responsibility to independently check the suitability and effectiveness of the proposed solutions within the scope of his individual requirements. For reliable statements on marking parameters and expected results, we expressly recommend the creation and evaluation of customer-specific sample parts under real conditions.

Disclaimer

The information provided in this document is intended solely for general guidance and does not constitute binding technical advice. It does not claim to be complete or entirely accurate. Taufenbach GmbH accepts no liability for the suitability of the described laser marking processes for specific applications or production Environments. It is the responsibility of the customer to evaluate and verify the appropriateness and effectiveness of the proposed solutions for their individual requirements. For reliable statements regarding marking parameters and expected results, we strongly recommend the production and assessment of customer-specific sample parts under real-world conditions.